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2. Behavioral probability
Alex Stein

1. INTRODUCTION

This chapter examines experimental studies that identify misalignments between ordinary 
people’s decisions under uncertainty and the rules of mathematical probability. 1 These 
studies use mathematical probability as a criterion for rational decisions. Based on this 
criterion, the studies tag people’s deviations from mathematical probability as irrational 
(or as boundedly rational). The studies also identify those deviations’ recurrent patterns 
and develop a taxonomy for describing people’s probabilistic mistakes. Under this 
taxonomy, those mistakes include “representativeness,” “availability,” “base-rate neglect,” 
and suppression of the product rule.

Representativeness is a person’s preference of familiar scenarios over statistical data 
(Kahneman 2011, pp. 146  –55). Availability is an individual’s overestimation of the 
probabilities attaching to events that fall within her experience or easily come to mind 
(Kahneman 2011, pp. 129–36). Base-rate neglect is a probability assessment that fails 
to consider general distributions of relevant events (Kahneman 2011, pp. 166–74). 
Suppression of the product rule is a person’s failure to treat a compound event (events A 
and B occurring simultaneously) as less probable than each of its components (A or B) 
(Kahneman 2011, pp. 156–65).

Arguably, these mistakes lead to erroneous decisions that adversely affect people’s 
welfare. Behavioral economists2 argue that the government should step in to prevent these 
erroneous decisions. Specifically, they recommend the following legal reforms: mandatory 
supply of information to error-prone individuals,3 soft choice-architecture,4 and regula-
tory intervention that will prevent and correct people’s probabilistic mistakes. 5 Areas 
targeted by these recommendations include accidents and risk regulation, consumer 

 1 The most significant of those studies are reported and analyzed in Kahneman (2011). 
Written by the discipline’s founding father, this book is sure to become a canonical text on behav-
ioral probability.

 2 This designation includes not only economists, but also psychologists investigating the ways 
in which people reason and make decisions. 

 3 See, e.g., Bar-Grill and Stone (2009) using behavioral economics to propose expansive 
disclosure requirements in connection with cellular service agreements. But see Ben-Shahar and 
Schneider (2011) criticizing the ongoing expansion of disclosure requirements. 

 4 See Thaler and Sunstein (2008) introducing the “choice architecture” method, understood 
as governmental manipulation of individuals’ menu of choices in a manner that nudges those 
individuals to take the desired action.

 5 For a summary of regulatory initiatives driven by behavioral economics and an analytical 
framework for regulation premised on subjects’ bounded rationality, see Vandenbergh, Carrico and 
Schultz Bressman (2011, pp. 763–78).
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agreements, business contracts, credit and lending, employment, insurance, prenuptial 
agreements, and adjudicative fact-finding. 6

Studies surveyed herein have been carried out by Daniel Kahneman, Amos Tversky 
and other behavioral economists. These studies form a distinct field of inquiry, identified 
here as “behavioral probability.” Behavioral probability is part of a more comprehensive 
area of study: behavioral economics. Behavioral economics is a discipline that encom-
passes behavioral probability along with experimental and empirical studies of people’s 
assessments of utility. Behavioral economics has been immensely successful as a general 
discipline: it has influenced many studies of economics, finance, and law (Vandenbergh, 
Carrico, and Schultz Bressman 2011; Bar-Gill and Warren 2008; Eisenberg 1995; Jolls, 
Sunstein, and Thaler 1998; Kahan 2010; Rachlinski 1998; Sunstein 1986; Williams 2009; 
Zamir 1998).

This chapter is organized as follows. Section 2 examines the rules of mathematical 
probability that the studies surveyed herein use as a benchmark for rationality. Section 
3 juxtaposes these rules against people’s hardwired habit of understanding the world 
in terms of causes and effects. This juxtaposition identifies a serious tension between 
mathematical probability and people’s causal understanding of the world. I show that this 
causal understanding is not indicative of people’s irrationality (or bounded rationality). 
Far from irrational, people’s causal understanding of the world has its own probabilistic 
framework, identified as inductive, or Baconian, probability. Section 4 uses these insights 
to revisit the experiments carried out by Kahneman, Tversky, and other behavioral 
 economists and tendered as a proof of people’s probabilistic failures. I demonstrate 
that these experiments do not establish that people are probabilistically irrational (or 
 boundedly rational). In fact, I show that some of these experiments are methodologically 
flawed.

 6 See, e.g., Bar-Gill and Warren (2008) identifying and calling for regulatory correction of 
people’s over-optimism in consumer credit agreements; Eisenberg (1995) identifying over-optimism 
in people’s liquidated damage undertakings, prenuptial agreements and other areas of contract 
and commending a regime that authorizes courts to modify contractually prearranged payments 
and waivers; Jolls, Sunstein and Thaler (1998, pp. 1522–28) identifying and calling for regulatory 
correction of hindsight biases in courts’ determinations of negligence, environmental torts, puni-
tive damages, and non-obviousness of patented inventions; Kahan (2010, pp. 1623–25) describing 
the effect of hindsight bias on fact-finding in adjudication; Rachlinski (1998) identifying the 
presence of hindsight bias in courts’ ascertainments of parties’ compliance with ex-ante norms 
and commending legal rules that counteract this bias; Sunstein (1986, pp. 1167–68) identifying 
and calling for regulatory correction of base-rate neglects in people’s decisions about risk and 
insurance, contractual undertakings, and their own employment termination prospects; Williams 
(2009) identifying and calling for regulatory correction of people’s base-rate neglects and resulting 
overconfidence in marriage-related and employment agreements and in credit card borrowing; 
Zamir (1998, pp. 269–70) identifying and calling for regulatory correction of people’s base-rate 
neglects and availability bias in savings and credit decisions. 
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2.  MATHEMATICAL PROBABILITY: LANGUAGE AND 
EPISTEMICS 7

The best way to understand mathematical probability is to perceive it as a language that 
describes the facts relevant to a person’s decisions. Like all languages that people use in 
their daily interactions, the probability language has a set of conventional rules. These 
rules determine the meanings, the grammar, and the syntax of probabilistic propositions. 
Compliance with these rules enables one person to form meaningful propositions about 
probability and communicate them to other people.

The probability language differs from ordinary languages in three fundamental 
respects: scope, parsimony, and abstraction. First, ordinary languages have a virtually 
unlimited scope, as they promote multiple purposes in a wide variety of ways. People use 
those languages in communicating facts, thoughts, ideas, feelings, emotions, sensations, 
and much else. The probability language, in contrast, has a much narrower scope because 
it only communicates the reasoner’s epistemic situation or balance of know ledge versus 
ignorance. The reasoner uses this language to communicate what facts she considers 
relevant to her decision and the extent to which those facts are probable. Second, ordinary 
languages have rich vocabu laries.8 The probability language, by contrast, is parsimonious 
by design: it uses a small set of concepts to describe multifarious events in a standardized 
mode. This mode establishes a common metric for all propositions about the probabilities 
of uncertain events. This metric creates syntactical uniformity in the probability language 
and makes it interpersonally transmittable. Finally, because a person usually needs to 
deal with more than one uncertain event, she needs a uniform set of abstract concepts by 
which to relate one probability estimate to another and to integrate those estimates into 
a comprehensive assessment of probability.

These attributes of the probability language account for its high level of abstraction, 
uncharacteristic of any ordinary language. To maintain the required parsimony and 
conceptual uniformity, the probability language uses mathematical symbols instead of 
words. Those symbols allow a person to formulate her assessments of probability with 
precision. This precision, however, is purchased at a price: the comprehensive trimming 
of particularities and nuances that characterize real-world facts. The scope of each assess-
ment’s meaning and applicability thus becomes opaque and at times indeterminable. This 
tradeoff—precise language for a weak epistemic grasp—is a core characteristic and the 
core problem of mathematical probability. The two components of this tradeoff stand in 
an inverse relationship to each other. To be able to formulate her probability assessments 
with precision, a person must get rid of untidy concepts, downsize her vocabulary, and 
abstract away the multifaceted nuances of the real world. All this weakens the person’s 
epistemic grasp of the real world. As a result, her abstract, numerical estimates will say 
hardly anything informative about concrete events that unfold on the ground. To have a 
strong epistemic grasp of the factual world, a person has to be wordy: she must utilize a 
rich vocabulary and loosen her conceptual precision.

 7 This section is based on Stein (2011).
 8 See, e.g., The Oxford English Dictionary (1989) a 20-volume dictionary that explains the 

meanings of over 600,000 words originating from approximately 220,000 etymological roots.
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2.1 The Language of Mathematical Probability

The mathematical probability system designates the numerical space between 0 and 1 (the 
algebraic equivalents of 0% and 100%) to accommodate every factual scenario that exists 
in the world:9

   _______________________________

 0 1

This space accommodates two propositions that are factually certain:

Proposition A: The probability that one of all the possible scenarios will materialize equals 
1. 

Proposition B: Correspondingly, the probability that none of all the possible scenarios 
will materialize equals 0.

These propositions are tautological. The first proposition essentially says, “Something 
will certainly happen.” The second makes an equally vacuous attestation: “There is no 
way that nothing will happen.” All other propositions occupying the probability space 
are meaningful because they describe concrete events that unfold in the real world. These 
meaningful propositions are inherently uncertain. There is no way of obtaining complete 
information that will verify or refute what they say. Consequently, the probability of 
any concrete scenario is always greater than zero and less than one. More precisely, the 
probability of any concrete scenario, P(S), equals one minus the probability of all factual 
contingencies in which the scenario does not materialize: P(S) = 1 – P(not – S). This 
formula is called the “complementation principle.” 10

To illustrate that principle, consider a random toss of a coin. The coin is unrigged: its 
probability of landing on heads is the same as its probability of landing on tails. Each 
of these probabilities thus equals 0.5. The two probabilities divide the entire probability 
space among themselves. The coin’s probability of landing on either heads or tails equals 
1, and we already know that this proposition is vacuous or tautological.

   0.5
   _________________|________________

 0 1

This illustration does not address the key question about the coin. What does “unrigged” 
mean? How does one know that this specific coin is equally likely to land on heads or 
on tails? This important question focuses on the epistemics of mathematical probability, 

 9 My discussion simplifies Kolmogorov’s classic definition of the “probability space” 
(Kolmogorov 1956).

10 See Cohen (1989, pp. 17–18, 56–57) stating and explaining the complementation principle.
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discussed in Section 2.2 below. My present discussion only addresses mathematical prob-
ability’s syntax and semantics. For that reason, I assume for now that the two probabilities 
are equal. The coin’s probability of landing on tails, as opposed to heads, or vice versa, 
is deemed to be 0.5.

We are now in a position to grasp the second canon of mathematical probability: the 
“multiplication principle” or the “product rule” (see Cohen [1989, pp. 18–21], stating 
and explaining the multiplication principle). The multiplication principle holds that 
the  probability of a joint occurrence of two mutually independent events, S1 and S2, 
equals the probability of one event multiplied by the probability of the other. Formally: 
P(S1 & S2) = P(S1) × P(S2).

My coin example makes this principle easy to understand. Consider the probability 
of two successive tosses of an unrigged coin landing on heads. The probability that the 
first toss will produce heads, P(S1), equals 0.5. The probability that the second toss will 
produce heads, P(S2), equals 0.5 as well. The first probability occupies half  of the entire 
probability space, while the second—as part of the compound, or conjunctive, scenario 
we are interested in—occupies half  of the space taken by the first probability. The diagram 
below shows this division of the probability space:

 0.25  0.5
   _________|________|________________

 0 1

The complementation and multiplication principles are the pillars of the mathematical 
system of probability. All other probability rules derive from these principles. Consider 
the “disjunction rule”  (see Kneale [1949, pp. 125–26] stating and explaining the disjunc-
tion rule) that allows a person to calculate the probability of alternative scenarios, denoted 
again as S1 and S2. This probability equals the sum of the probabilities attaching to those 
scenarios, minus the probability of the scenarios’ joint occurrence. Formally: P(S1 or S2) 
= P(S1) + P(S2) – P(S1 & S2). Here, the deduction of the joint-occurrence probability, 
P(S1 & S2), prevents double counting of the same probability space. The probability of 
each individual scenario, P(S1) and P(S2), occupies the space in which the scenario unfolds 
both alone as well as in conjunction with the other scenario: P(S1) occupies the space in 
which S1 occurs together with S2, and P(S2) occupies the space in which S2 occurs together 
with S1. There is, however, only one space for S1 & S2 as a combined scenario, and hence 
the deduction.

A joint occurrence of two (or more) events is not always factually possible. For example, 
a single toss of a coin can yield either heads or tails, but not both: that is, P(S1 & S2) = 0. 
The coin’s probability of landing on heads or, alternatively, on tails consequently equals 1 
(0.5 + 0.5 – 0). But in real-life situations, events often occur in conjunction with each other. 
For example, a medical patient’s permanent disability may originate from his preexisting 
condition, from his doctor’s malpractice, or from both. If  so, then P(S1 & S2) > 0.

A conjunctive occurrence of two events can also be perceived as a compound scenario 
in which one event (H) unfolds in the presence of another (E). The probability of any 
such scenario is called “conditional” because it does not attach unconditionally to a single 
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event, H, but rather to event H given the presence, or occurrence, of E, which is denoted 
as P(H|E).

This formulation allows me to present another core component of the mathematical 
probability system: Bayes’ Theorem.11 This theorem establishes that when I know the 
individual probabilities of E and H and the probability of E’s occurrence in the presence 
of H, I can calculate the probability of H’s occurrence in the presence of E. Application of 
the multiplication principle (the product rule) to the prospect of a joint occurrence of two 
events, E and H, yields P(E & H) = P(E) × P(H|E). Under the same principle, the conjunc-
tive probability of E and H, restated as P(H&E), also equals P(H) × P(E|H). This inver-
sion sets up a probabilistically important equality: P(E) × P(H|E) = P(H) × P(E|H).12 
Bayes’ Th eorem is derived from this equality: P(H|E) = P(H) × P(E|H) ÷ P(E).

My labeling of the two events as E and H is not accidental. Under the widely accepted 
terminology, H stands for a reasoner’s hypothesis, while E stands for her evidence. Both E 
and H are events, but the reasoner is not considering those events individually. Rather, she 
is examining the extent to which evidence E confirms hypothesis H. A Bayesian formula-
tion consequently separates between the probability of hypothesis H before the arrival 
of the evidence (P(H)); the general probability of the evidence’s presence in the world 
(P(E)); and the probability of the evidence being present in cases in which hypothesis H 
materializes (P(E|H)). These three factors allow the reasoner to compute the posterior 
probability of her hypothesis: the probability of hypothesis H given evidence E. The 
reasoner must process every item of her evidence sequentially by applying this procedure. 
She must perform a Bayesian calculation time and time again until all of her evidence is 
taken into account. Each of those calculations will update the hypothesis’s prior prob-
ability by transforming it into a new posterior probability. The posterior probability will 
become final after the reasoner had exhausted all of the available evidence.13

Notice the sign ificance of the evidence-based multiplier, P(E|H) ÷ P(E). This multiplier 
is called the “likelihood ratio” (Schum 1994, p. 218 ) or—as I prefer to call it—the “relevancy 
coefficient.”14 The relevancy coefficient measures the frequency with which E appears in 
cases featuring H, relative to the frequency of E’s appearance in all possible cases. If  
P(E|H) ÷ P(E) > 1 (E’s appearance in cases of H is more frequent than its general appear-
ance), the probability of hypothesis H goes up. Formally: P(H|E) > P(H), which means 
that evidence E confirms hypothesis H. On the other hand, when P(E|H) ÷ P(E) < 1 (E’s 
appearance in cases of H is less frequent than its general appearance), the probability of 
hypothesis H goes down. Formally: P(H|E) < P(H), which means that evidence E makes 
hypothesis H less probable (or disconfirms it). Finally, if  P(E|H) = P(E) (E’s appearance 
in cases of H is as frequent as its general appearance), the presence of E does not influence 
the probability of H. This makes evidence E altogether irrelevant.15

To illustrate, consider  a tax agency that uses internal fraud-risk criteria for auditing 

11 See Bayes  (1763) for a modern statement of the theorem, see Cohen (1989, p. 68).
12 Because of this inversion, some call Bayes’ Theorem the “Inversion Theorem.” See, e.g., 

Kneale (1949, p. 129). 
13 For a good explanation of this updating, see Schum (1994, pp. 215–22).
14  Schum (1994, p. 219) associating the likelihood ratio with the “force of evidence”.
15 Cf. Lempert (1977, pp. 1025–27) offering similar formulation of relevancy coefficients.
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firms.16 By applying those criter ia, the agency singles out for auditing one firm out of ten. 
This ratio is public knowledge. Firms do not know anything about the agency’s criteria 
for auditing (nor does anyone else outside the agency). Under the information available 
to firms, their prior probability of being audited equals 0.1.

Now consider an individual firm whose reported expenses have doubled relative to 
past years. Does this evidence change the probability of being audited? The answer to 
this question depends on whether a steep increase in a firm’s reported expenses appears 
more frequently in cases in which it was audited than in general. Assume that experienced 
accountants formed an opinion that increased expenses are three times more likely to 
appear in auditing situations than generally. This relevancy coefficient triples the prior 
probability of the firm’s audit. The firm’s posterior probability of being audited thus 
turns into 0.3.

But how do we know that these evidential effects are brought about by causes and are 
more than a mere correlation? We do not know it for sure, and I address this issue below 
in Section 2.2. My current goal, as I already mentioned, is quite narrow: in the present 
section, I only articulate the semantics and syntax of mathematical probability. Bayes’ 
Theorem is part of those semantics and syntax: it tells us how to conceptualize our 
epistemic situations by using mathematical language. However, as I demonstrate below in 
Section 2.2, the theorem itself  provides no instructions on how to understand causes and 
effects of the outside world and relate them to each other.

Mathematical language creates a uniform conceptual framework for all probability 
assessments that rely on instantial multiplicity or frequency of events. For those who 
base their estimates of probability on events’ frequency, this language is indispensable.17 
This language is also necessary for formulating probability assessments on the basis of 
propensity—a disposition of a given factual setup to produce a particular outcome over 
a series of cases or experiments.18 Finally, people basing their decisions upon intuited or 
“subjective” probabilities19 might also benefit from using the mathematical language. This 
language introduces conceptual precision and coherence into a reasoner’s conversion of 
her experience-based beliefs into numbers. Those numbers must more or less correspond 
to the reasoner’s empirical situation. A mismatch between the numbers and empirical 
reality will produce a bad decision (Cohen 1989, p. 60).

Proper use of the mathematical language, however, does not guarantee that a person’s 
probability assessments will be accurate. This language only helps a person conceptualize 
her raw information in numerical terms and communicate it to other people. Before using 
this language, a person must properly perceive and understand this information. This 
basic cognitional task is antecedent to a person’s mathematical assessment of probability. 

16 A good real-world example of this practice is the secret “Discriminant Index Function” 
(DIF), used by the IRS in selecting taxpayers for audits. See, e.g., Gillin v. Internal Revenue Serv. 
(980 F.2d 819, 822 1st Cir. [1992]) “The IRS closely guards information concerning its DIF scoring 
methodology because knowledge of the technique would enable an unscrupulous taxpayer to 
manipulate his return to obtain a lower DIF score and reduce the probability of an audit.”; Lawsky 
(2009, pp. 1068–70) describing the DIF method used by the IRS. 

17 See Cohen (1989, pp. 47–48) explaining frequency as a rate of relevant instances.
18 Cohen (1989, pp. 53–58) explaining propensity as a rate of relevant instances.
19 Cohen (1989, pp. 58–70) explaining subjective probability in terms of reasoners’ betting odds.
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Bayes’ Theorem and other mathematical rules of probability do not tell people how to 
go about this task.

Proper use of mathematical probability therefore can only guarantee a gambling kind of 
accuracy: accuracy in ascribing probability estimates to perceived generalities, as opposed 
to individual events. If  so, granted that a person properly conceptualizes her experiences 
in mathematical language, will her probability assessments be accurate if  she commits no 
mathematical errors in making those assessments? This question is fundamental to the 
entire probability theory, and the answer to it depends on what “accurate” means. The 
mathematical system offers reasoners only one sort of guarantee. Absent information 
about relevant causes and effects, a reasoner will do well to follow that system, which 
would then enable her to achieve the maximal level of accuracy. Failure to follow that 
system will lead the reasoner astray.

This virtue of mathematical probability is best illustrated by a gambling scenario 
known as “Dutch Book.” Consider a gambler who accepts two $100 bets at odds of 1 
to 2 that a particular tennis player will win and, respectively, lose her upcoming match. 
This combination of bets is fundamentally irrational. Should the player win the match, 
the gambler would win $100 on the first bet, but would lose $200 on the second; and in 
the event the player loses the match, the gambler would lose $200 on the first bet and win 
only $100 on the second. Hence, the gambler is sure to lose $100.

This outcome has a simple explanation: the gambler ascribed an identical probability 
(0.667)20 to factual propositions that negate one another, which was a bad idea. If  the 
gambler’s acceptance of the first bet were a good decision, the player’s probability of win-
ning the match would then be 0.667, as estimated by the gambler. Under that probability, 
however, the gambler could not rationally accept the second bet, which assumed that the 
player had a 0.667 probability of losing the match. Given that the gambler was right to 
accept the first bet, this probability could only be 0.333 (1 – 0.667). Any other probability 
assessment in placing bets would make the gambler lose his money.

Based on this insight, Frank Ramsey and Bruno de Finetti have demonstrated 
(independently of each other) that failure to follow the rules of mathematical probability 
engenders irrational decisions (Cohen 1989, pp. 60–61). This demonstration, however, 
holds true only in gambling situations in which decision-makers have no information 
about causes and effects that determine the course of specific events. Economists do not 
pay much attention to this limitation (Stein 2011, pp. 223–34), and I now turn to discuss it.

2.2 The Epistemics of Mathematical Probability

John Stuart Mill sharply criticized the use of instantial multiplicity as a basis for inference 
(Mill [1843] 1980, pp. 549–53). He described it as “the natural Induction of uninquiring 
minds, the induction of the ancients, which proceeds per enumerationem simplicem: ‘This, 
that, and the other A are B, I cannot think of any A which is not B, therefore every A is 
B’” (Mill [1843] 1980, p. 549).

This sentence succinctly identifies the core problem of the mathematical probability 

20 This probability reflects the gambler’s belief  that the player wins two matches out of three 
under given conditions, which makes him accept the bet at the odds of 1 to 2.
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system: this system, says Mill, is epistemologically fragile, if  not empty. The system’s 
mathematical rules only instruct the reasoner on how to convert her information into 
cardinal numbers. These rules have no epistemic ambition. They do not tell the reasoner 
what counts as information upon which she ought to rely. This task is undertaken by the 
system’s rules of inference that are not as rigorous and intuitive as Boolean algebra. I 
examine those rules of inference in the paragraphs ahead.

One of those rules holds that any scenario not completely eliminated by existing evi-
dence is a factual possibility that must occupy some of the probability space. The reasoner 
must consequently assign some probability to any such scenario, and this probability must 
be greater than zero. I call this rule “the uncertainty principle.”

The second rule—“the principle of indifference”—is a direct consequence of the first. 
This rule determines the epistemic implications of the unavailable information for the 
reasoner’s probability decision. The rule postulates that unavailable information is not 
slanted in any direction, meaning that the reasoner has no reasons for considering one 
unevidenced scenario as more probable than another unevidenced scenario (Cohen 1989, 
pp. 43–44). In other words, the reasoner ought to be epistemically indifferent between 
those scenarios, and this indifference makes the unevidenced scenarios equally probable.

The third rule logically derives from the second. It presumes that statistical distribu-
tions are extendible. To follow Mill’s formulation, if  70% of events exhibiting feature 
A exhibit feature B as well, then presumptively any future occurrence of A has a 70% 
chance of occurring together with B. I call this rule “the extendibility presumption.” 
This presumption is tentative and defeasible: new information showing, for example, that 
B might be brought about by C—a causal factor unassociated with A—would render it 
inapplicable. Absent such information, however, the extendibility presumption applies 
with full force. The presumption’s mechanism relies on the indifference principle as well. 
This principle treats all indistinguishable occurrences of A, past and future, as equivalents. 
The same principle marks any missing information that could identify B’s causal origins 
as unslanted. The reasoner consequently must treat this unknown information as equally 
likely to both increase and decrease the rate of B’s appearance in cases of A. Every future 
occurrence of A thus becomes statistically identical to A’s past occurrences that exhibited 
B at a 70% rate.

The uncertainty principle seems epistemologically innocuous, but this appearance is 
misleading. Any factual scenario that existing evidence does not completely rule out 
must, indeed, be considered possible. This scenario therefore must have some probability 
on a 0–1 scale. All of this is undoubtedly correct. The uncertainty principle, however, also 
suggests that the reasoner can assign concrete probabilities to such unevidenced scenarios. 
This “can” is epistemologically unwarranted because the reasoner does not know those 
probabilities. Any of her probability estimates will be pure guesswork: a creation of 
knowledge from ignorance.

The principle of indifference is a pillar of the entire system of mathematical  probability. 21 
It stabilizes the reasoner’s information in order to make it amenable to mathematical calcu-

21 See Keynes (1921, pp. 41–42) describing the indifference principle as essential for establish-
ing equally probable possibilities—a preliminary condition for all mathematical assessments of 
probability.
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lus. 22 The principle’s information-stabilizing method is best presented in Bayesian terms. 
Take a reasoner who considered all available information and determined the probability 
of the relevant scenario, P(S). The reasoner knows that her information is incomplete and 
turns to estimating the implications of the unavailable information (U). The reasoner tries 
to figure out whether this unavailable information could change her initial probability 
estimate, P(S). In formal terms, the reasoner needs to determine P(S|U). Under Bayes’ 
Theorem, this probability equals P(S) × [P(U|S) ÷ P(U)]. With the prior probability, P(S), 
already known, the reasoner needs to determine the relevancy coefficient, P(U|S) ÷ P(U). 
To this end, she needs to obtain two probabilities: the probability of U’s appearance in 
general and the probability of U’s appearance in cases of S. Because the reasoner has no 
information upon which to make that determination, the indifference principle tells her 
to assume that U is equally likely to confirm and to disconfirm S: P(U|S) = P(U). The 
relevancy coefficient consequently equals 1, and the reasoner’s prior probability, P(S), 
remains unchanged. The indifference principle essentially instructs the reasoner to deem 
missing information altogether irrelevant to her decision.

This instruction is epistemologically invalid. The reasoner can treat unavailable infor-
mation as irrelevant to her decision only if  she has no reason to believe that it might be 
relevant (Keynes 1921, pp. 55–56). Whether those reasons are present or absent depends 
on the reasoner’s known information. When this information indicates that the unavail-
able information might be relevant, P(U|S) and P(U) can no longer be considered equal 
to each other. The indifference principle consequently becomes inapplicable. On the other 
hand, when the known information indicates that the unavailable information is irrelevant 
to the reasoner’s decision, something else happens. The known information establishes 
that P(U|S) actually equals P(U). The proven, as opposed to postulated, equality between 
P(U|S) and P(U) makes the indifference principle redundant. From the epistemological 
point of view, therefore, there are no circumstances under which this principle can ever 
become applicable.23

The i ndifference principle thus does not merely purport to manage unavailable infor-
mation. Instead, it forces itself  on the available information by requiring the reasoner 
to interpret that information in a particular way. Effectively, the principle instructs the 
reasoner to proceed on the assumption that all the facts necessary for her probability 
assessment are specified in the available information. This artificially created informa-
tional closure sharply contrasts with the causative probabilistic reasoning that I discuss 
in Section 3.24

From  an epistemological standpoint, the extendibility presumption is an equally 
problematic device. This presumption bypasses the question of causation, which makes 

22 As Keynes explains, “In order that numerical measurement may be possible, we must be 
given a number of equally probable alternatives” (Keynes 1921, p. 41).

23 See Cohen (1989, pp. 45–46) showing that the indifference principle is either circular or 
redundant; Keynes (1921, pp. 45–47) demonstrating that the indifference principle is arbitrary and 
epistemologically unsustainable. 

24 See Cohen (1979, p. 389), “Baconian [causative] probability-functions  . . .  grade 
 probabilification . . . by the extent to which all relevant facts are specified in the evidence.”
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it epistemologically deficient.25 As Mi ll’s quote suggests, an occurrence of feature B in 
numerous cases of A does not, by and of itself, establish that B might occur in a future 
case of A. Only evidence of causation can establish that this future occurrence is probable. 
This evidence needs to identify the causal forces bringing about the conjunctive occur-
rence of A and B. Identification of those forces needs to rely on a plausible causal theory 
demonstrating that B’s presence in cases of A is law-bound rather than accidental (Cohen 
1986, p. 177). This demonstration involves proof that B is or tends to be uniformly present 
in cases of A for reasons that remain the same in all cases (Cohen 1986, pp. 177–79). Those 
invariant reasons make the uniformity law-bound (Cohen 1986, p. 179). Their absence, 
in contrast, indicates that B’s presence in cases of A is possibly accidental. The observed 
uniformity consequently becomes non-extendible. Decision-makers who choose to rely on 
this uniformity will either systematically err or arrive at correct probability assessments by 
sheer accident. They will never base those assessments upon knowledge.26

To illustrate, consider again the basic factual setup of my tax-audit example: the tax 
agency audits one firm out of ten. Assuming that no other information is available, will 
it be plausible to estimate that each firm’s probability of being audited equals 0.1? This 
estimate’s plausibility depends on whether the “one-to-ten” distribution is extendible. 
This distribution could be extendible if  the agency were to make its audit decisions by 
some randomized procedure, such as a draw. This randomization would then give every 
firm an equal chance of being audited by the agency. The agency, however, does not select 
audited firms by a draw. Instead, it applies its secret fraud-risk criteria. This fact makes 
the observed distribution of audits non-extendible. Consequently, the 0.1 estimate of a 
firm’s probability of being audited is completely implausible. Relying on it would be a 
serious mistake.27

To rebut this critique, adherents of mathematical probability might invoke the long-run 
argument, mistakenly (but commonly) grounded upon Bernoulli’s law of large numbers 
(Bernoulli [1713] 2006, pp. 315–40).28 This  argument concedes that the 0.1 estimate of 
a firm’s probability of being audited is not a reliable predictor of any specific auditing 
event. The argument, however, holds that repeat-players—firms that file tax reports every 
year—should rely on this estimate because at some point it will transform into a real audit. 
With some firms, it will happen sooner than with others, but eventually the agency will 
audit every firm.

This argument recommends that every person perceive her epistemic state of uncer-
tainty as an actual experience of a series of stochastic events that can take her life in any 

25 Another problem with extendibility is its dependence on a reference class—a statistical 
generalization that can be gerrymandered in numerous ways (Allen and Pardo 2007, pp. 111–14).

26 For classic accounts of why accidentally true beliefs do not constitute knowledge, see Gettier 
(1963), which explains that accidentally acquired justification for a true belief  is not knowledge; 
and Goldman (1967) attesting that a knower’s true belief  must be induced by the belief ’s truth. 
See also Nozick (1993, pp. 64–100) defining knowledge as a true belief  supported by the knower’s 
truth-tracking reasons.

27 Taxpayers’ responses to an increase in the general probability of audit are difficult to 
measure. For one such attempt, see Slemrod, Blumenthal and Christian (2001, p. 465), which finds 
that audit rates are positively correlated with reported income of low-income and middle-income 
taxpayers and are negatively correlated with reported income of high-income taxpayers.

28 For a superb account of the law’s intellectual history, see Hacking (1990, pp. 95–104).
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direction. This recommendation fills every informational gap with God playing dice. 
However, neither God nor the tax agency will actually throw a die to identify firms that 
require an audit. Whether a particular firm will be audited will be determined by causal 
forces, namely, the tax officers who will apply the agency’s fraud-risk criteria to what they 
know about each firm. Each firm therefore should rely on its best estimate of how those 
officers will evaluate its tax return. If, instead of relying on this estimate, a firm chooses 
to base its actions on the 10% chance of being audited, it will sooner or later find itself  
on the losing side.29 This firm will either take wasteful precautions against liability for tax 
evasion or expose itself  to that liability by acting recklessly.30

29 This point was famously made by Samuelson (1963).
30 To mitigate this problem, statisticians often use “confidence intervals.” See, e.g., Wonnacott 

and Wonnacott (1990, pp. 253–86). A confidence interval is essentially a second-order probability: 
an estimate of the chances that the reasoner’s event-related (first-order) probability is accurate. 
Conventionally, those chances must not go below 95%—a confidence level that promises that 
the reasoner’s estimate of the event-related probability will be accurate in 95 cases out of 100 
(Wonnacott and Wonnacott 1990, pp. 254–55). The reasoner must conceptualize her estimate of 
the event-related probability not as a fixed figure, but rather—more realistically—as an average 
probability deriving from a sample of probabilities attaching to factual setups similar to hers. The 
reasoner should expand her sample of setups by relying on her experience or by conducting a series 
of controlled observations. If  she obtains a sufficiently large sample, the setups’ probabilities will 
form a “normal” bell-shaped distribution curve. Subsequently, in order to obtain a 95% confidence 
level in her estimate of the probability, the reasoner must eliminate the curve’s extremes and derive 
the estimate from the representative middle. Technically, she must shorten the distribution curve by 
trimming away 2.5% from each tail. This trimming will compress the reasoner’s information and 
narrow the range of probabilities in her sample. The average probability calculated in this way will 
then have a high degree of accuracy. The chances that it will require revision in the future as a result 
of the arrival of new information are relatively low. This feature will make the probability estimate 
resilient or, as some call it, robust or invariant. See Logue (1995, pp. 78–95) associating strength 
of probability estimates with resiliency; Nozick (2001, pp. 17–19, 79–87) associating strength of 
probability estimates with their invariance across cases. The 95% confidence-interval requirement 
undeniably improves the quality of probabilistic assessments. The fact that those assessments stay 
invariant across many instances makes them dependable (Cohen 1989, p. 118). This improvement, 
however, does not resolve the deep epistemological problem identified in this section. Resilience of 
a probability estimate only indicates that the estimate is statistically stable. For example, a resilient 
probability of 0.7 can only identify the number of cases—70 out of 100—in which the underlying 
event will actually occur. This assurance, however, does not determine the applicability of the 
0.7 probability to individual events. Whether this (or other) probability attaches to an individual 
event does not depend on the availability of this assurance; rather, it depends on the operation 
of the indifference principle and the extendibility presumption. These inferential rules apply to 
an individual event in the absence of information accounting for the difference between the cases 
in which the event occurs and the cases in which it does not occur. The reasoner will thus always 
make an epistemically unwarranted assumption that the unavailable information is not slanted 
in any direction. The mathematical system may try to adopt a more demanding informational 
criterion: one that differentiates between probability estimates on the basis of their epistemic 
weights (Keynes 1921, pp. 71–77). For contemporary analyses of Keynes’s “weight” criterion, 
see Cohen (1989, pp. 102–109); Schum (1994, pp. 251–57); Stein (2005, pp. 80–91); Cohen (1985). 
Charles Peirce also endorsed this criterion when he observed that “to express the proper state of 
our belief, not one number but two are requisite, the first depending on the inferred probability, the 
second on the amount of knowledge on which that probability is based” (Peirce 1872–1878). Under 
this criterion, the weight of a probability estimate will be determined by the comprehensiveness of 
what the reasoner does and does not know about her case (Keynes 1921, pp. 71, 77). The decisional 
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3. CAUSAL PROBABILITY AND COMMON SENSE

Consider the following scenario:

Peter undergoes a brain scan by MRI, and the scan is analyzed by a radiologist. The radiologist 
tells Peter that the lump that appears on the scan is benign to the best of her knowledge. She 
clarifies that she visually examined every part of Peter’s brain and found no signs of malignancy. 
Peter asks the radiologist to translate the “best of her knowledge” into numbers, and the 
radiologist explains that 90% of the patients with similar-looking lumps have no cancer and 
that indications of malignancy are accidentally missed in 10% of the cases. The radiologist 
also tells Peter that only complicated brain surgery and a biopsy can determine with certainty 
whether he actually has cancer. According to the radiologist, this surgery involves a 15% risk of 
severe brain damage; in the remaining 85% of the cases, it successfully removes the lump and the 
patient recovers. Peter’s primary care physician subsequently informs him that MRI machines 
have varying dependability. Specifically, he tells Peter that about 10% of those machines fail to 
reproduce images of small-size malignancies in the brain.

Under the mathematical system, Peter’s probability of not having cancer equals 0.81. This 
number aggregates two probabilities of 0.9: the probability of correctness that attaches 
to the radiologist’s diagnosis and the machine’s probability of properly reproducing the 
image of Peter’s brain. Peter’s probability of having cancer consequently equals 0.19 
(1 – 0.81).31 This  probability is greater than the 0.15 probability of sustaining severe brain 
damage from the surgery. Should Peter opt for the surgery?

Under the mathematical system, he should. The fatalities to which the two probabilities 
attach are roughly identical. If  so, Peter should choose the course of action that reduces 
the fatality’s probability. Under the mathematical system of probability, this choice will 
improve Peter’s welfare (by 4% of the value of his undamaged brain).

Common sense, however, would advise Peter to rely on the causative probability 
instead. Specifically, it would tell Peter to rely on the radiologist’s negative diagnosis 
and pay little or no attention to the background statistics. The radiologist’s diagnosis is 
the only empirically-based causal account that concerns Peter’s individual condition.32 
The radiologist informs Peter about what she saw and what did not see in his brain.33 
This diagnosis is the only information compatible with the causal nature of Peter’s 

synergy between probability and weight will create a serious problem of incommensurability. 
Consider a reasoner who faces a high but not weighty probability, on the one hand, and a weighty 
but low probability, on the other hand. Which of the two probabilities is more dependable than 
the other? This question does not have a readily available answer. There is simply no metric by 
which to compare the two sets of probabilities. This problem may not be insurmountable, but why 
tolerate it in the first place? Why try hard to undo the damage caused by the mathematical system’s 
epistemological outlaws, instead of barring them? Sections 3 and 4 below respond to this question.

31 This calculation applies the negation rule. The same probability can be calculated by aggre-
gating Peter’s 10% chance of having a small malignancy missed by the MRI machine with his 10% 
chance of being one of the radiologist’s false negatives. Peter’s probability of falling into either of  
these misfortunes equals (0.1 + 0.1) − (0.1 × 0.1) = 0.19. This calculation follows the disjunction 
rule.

32 Cf. Cohen (1980) arguing that patient-specific diagnoses are superior to statistical ones.
33 See, e.g., Mavroforakis et al. (2005) specifying malignancy and benignancy indicators that a 

radiologist should evaluate qualitatively in each patient and developing a quantitative tool to make 
those evaluations more robust.
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physical environment. The general statistic extrapolated from the radiologist’s and the 
MRI machine’s history of errors is incompatible with this environment. This statistical 
information identifies no causal factors relevant to Peter’s brain.

This common sense (that gets philosophical support from Francis Bacon [Bacon 1889] 
and John Stuart Mill [Mill [1843] 1980, pp. 549–53]) is impeccable. Peter should rely on the 
radiologist’s diagnosis of his brain. Peter will make a serious and potentially fatal mistake if  
he chooses to undergo the brain surgery instead. Evidence that the radiologist erred in the 
past in ten diagnoses out of 100 reduces the general reliability of her diagnoses. This evidence, 
however, is causally irrelevant to the question of whether Peter has cancer. Whether Peter has 
cancer is a matter of empirical fact that the radiologist tried to ascertain. Her ascertainment 
of this fact relied on a series of patient-specific observations and medical science. While 
doing her job, the radiologist does not proceed stochastically by randomly distributing ten 
false-negative diagnoses across one hundred patients. Rather, she does her best for each and 
every patient, but, unfortunately, fails to identify cancer in 10 patients out of 100.

These errors had patient-specific or scan-specific causes: invisible malignancies, 
malfunctioning MRI machines, accidental oversights, and so forth. Those causes are 
unidentifiable, which means that Peter may still find himself  among the afflicted patients. 
As an empirical matter, however, the unknown status of those causes does not equalize 
the chances of being misdiagnosed for each and every patient. Consequently, Peter has 
no empirical basis to discount the credibility of the radiologist’s diagnosis of his brain 
by 10%.34 This  diagnosis is not completely certain, but it gives Peter qualitatively the best 
information that he can depend upon. This information is qualitatively the best because 
it is supported by an established causal theory: the radiologist’s application of medical 
science to what she saw in Peter’s brain. By contrast, no causal theory can ever support the 
view that the radiologist’s patients are equally likely to be misdiagnosed as cancer-free.35

With  this in mind, consider how ordinary people reason about their daily affairs. People 
are born into the world of causes and effects. Their daily affairs encompass events and 
phenomena that bring about other events and phenomena. As people accumulate their 
experiences and education, they internalize the idea of causation and the correspond-
ing belief  that things always happen for a reason and never without a reason.36 Causal 
mechanisms underlying events and phenomena that people experience in their lives are 
not always known, but they are always present in the world. This causal understanding of 
the world drives most of ordinary people’s decisions. These decisions therefore virtually 
always focus on some discrete, individual event and its underlying cause, as opposed to 
general distributions of similar-looking events. The same goes for generalizations that 

34 The same holds true for a possible malfunctioning of the MRI machine that scanned Peter’s 
brain. There is no reason to believe that the risk of malfunction is distributed evenly across all 
machines and patients.

35 Error statistics are not immaterial: if  many (say, 30%) of the radiologist’s diagnoses were 
false, Peter would have a good reason to doubt her credibility. This factor, however, would still be 
causatively irrelevant to whether he actually has cancer. Under these circumstances, Peter would 
have to find a credible specialist or endure the uncertainty. Cf. Thomson (1984, pp. 127–33) distin-
guishing between “external” evidence that derives from naked statistics and “internal” case-specific 
evidence that fits into a causal generalization.

36 See generally Lagnado (2011).
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ordinary people use in their decisions. These generalizations explain the world as governed 
by causal laws. They are akin to law-like generalities investigated by modern scientists.37

For that reason, when a person decides under conditions of uncertainty whether a 
certain event will (or did) occur, she articulates the available scenarios and selects the 
most plausible of those scenarios. More precisely, the person tries to figure out which 
of the available scenarios makes most sense in terms of coherence, consilience, causality, 
and evidential coverage (Allen and Stein 2013, pp. 567–71). This reasoning to the “best 
explanation” generally aligns with the common sense that people use in their daily affairs 
(Allen and Stein 2013, pp. 575–77).

This mode of reasoning rejects the indifference principle that animates mathematical 
probability. As I already explained, the indifference principle instructs reasoners to ignore 
the uncertainties in their evidence on the assumption that those uncertainties cancel each 
other out (Keynes 1921).38 This assumption converts the reasoners’ ignorance into the 
actual knowledge of probabilities, which it deems to be equal; and it has no epistemic 
warrant for that. Under the “best explanation” criterion, the decision-maker must select 
the best evidenced set of causes and effects, while rejecting all unevidenced hypotheses. 
She cannot assume that those hypotheses are equally probable—and thus cancel out—just 
because they are completely unevidenced. This epistemological injunction also does not 
allow the decision-maker to translate her reasons into mathematical fractions occupying 
a 0–1 scale. Because the decision-maker’s information is incomplete, she has no epistemi-
cally justified reason to postulate that she knows the probabilities of all relevant scenarios. 
The decision-maker must consequently use words, rather than numbers, in evaluating the 
coherence, consilience, causal fit, and evidential coverage of competing scenarios.

To properly understand how ordinary people reason, one also needs to separate their 
“beliefs” from “acceptances,” as recommended by philosophers of rationality.39 Under 
this taxonomy, “acceptance” is a mentally active process that includes application of deci-
sional rules to available information (Kahneman 2011, pp. 16–20). “Belief,” by contrast, 
is a person’s feeling, sensation, or hunch: an intellectually passive state of mind generated 
by unanalyzed experiences (Kahneman 2011, pp. 16–20).

Many of people’s actions are driven by beliefs that people do not bother to reflect upon 
until it becomes necessary. For example, a person may form a belief  that all medications 
sold by drugstores across the United States are as safe and as effective as advertised. 
Acting upon this unexamined belief  is rational up to a point. For example, a person 
can rationally rely on this experience-based belief  when she takes care of minor aches 
and discomforts. However, in serious health matters, a person will do well to discuss the 

37 See generally Lange (1993) defining law-bound regularities as separate from accidental events.
38 See Keynes (1921, pp. 41–42) describing the indifference principle as essential for establish-

ing equally probable possibilities—a preliminary condition for all mathematical assessments of 
probability; as Keynes explains, “In order that numerical measurement may be possible, we must 
be given a number of equally probable alternatives” Keynes (1921, p. 41, original emphasis); see 
Cohen (1989, 45–46) showing that the indifference principle is either circular or redundant; Keynes 
(1921, 45–47) demonstrating that the indifference principle is arbitrary and epistemologically 
unsustainable; see also Cohen (1979, p. 389) “Baconian [causative] probability-functions . . . grade 
probabilification . . . by the extent to which all relevant facts are specified in the evidence.” 

39 See Cohen (1992, pp. 1–27, 100–108) delineating the differences between “belief” and 
“acceptance”.
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pros and cons of every relevant medication with a qualified professional. Her decisions 
in such matters must rely upon rigorous and well-articulated criteria for assessing the 
 medication’s effects, as in my radiologist example. In other words, instead of simply rely-
ing on her beliefs, the person must form an “acceptance” based upon rules of reasoning.

Importantly, “belief” and “acceptance” are not analogs of what psychologists call 
“System 1” and “System 2” (Kahneman 2011, pp. 19–30). The “System 1/System 2” 
 taxonomy only captures the intensity of a person’s brainwork. To this end, it focuses 
on whether the person puts deliberative effort into her decisions (System 2) or decides 
quickly and unreflectively by using her intuition (System 1) (Kahneman 2011, pp. 1–30). 
By contrast, the belief–acceptance taxonomy captures the brainwork’s normative content 
by separating the person’s rule-free decisions (beliefs) from his rule-driven decisions 
 (acceptances). System 1 and System 2 can, however, generate both beliefs and acceptances, 
depending on whether the person follows decisional rules—intuitively or reflectively. To 
be sure, a rule follower will use System 2 more often than System 1. Many people, however, 
also develop rule-driven instincts: drivers following the “two-second rule” to avoid col-
liding with a vehicle ahead of them are a good example of persons making rule-driven 
decisions that fall under System 1. On the other hand, some people may expend their 
deliberative efforts (System 2) on the formation of rule-free beliefs.

Behavioral economists systematically ignore these perfectly rational characteristics 
of ordinary people’s reasoning. In Section 4 below, I evaluate the consequences of that 
omission. Before conducting that evaluation, I complete my discussion of causal prob-
ability by taking a closer look at its virtues. Specifically, I develop an analytical tool for 
separating cases that call for the application of mathematical probability from cases in 
which mathematical probability leads reasoners astray and where they will do well to use 
causal probability instead.

4. BOUNDED PROBABILISTIC RATIONALITY REVISITED40

In the following paragraphs I revisit the flagship experiments that helped behavioral 
economists to establish the bounded probabilistic rationality theory (BPR). My critique 
of BPR is twofold. First, I show that BPR and its supporting experiments suffer from 
insurmountable methodological problems. Subsequently, I demonstrate that BPR is 
flawed from the standpoint of conventional probability theory as well.

4.1 Belief vs. Acceptance

Behavioral experiments underlying the bounded rationality thesis uniformly miss the 
belief–acceptance distinction. People who participate in these experiments develop no 
rule-based acceptances, nor are they asked to form such acceptances by the experimenters. 
All they do is report their pre-analytical beliefs because this is what the experimenters 
ask them to do. People’s rationality, however, can only be evaluated by reference to their 

40 This section draws on Stein (2013).
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acceptances that apply rules of reasoning.41 Identifying the criteria, or rules, that people 
apply in their evaluations of probability consequently becomes crucial.

Behavioral economists systematically fail to investigate people’s acceptances, as 
 distinguished from their beliefs. As I explain below, this omission undermines BPR. 
Failure to separate rule-driven acceptances from rule-free beliefs has also led behavioral 
economists to conflate people’s cognitive performance with cognitive competence. 42 This 
conflation makes the resulting behavioral accounts deficient. The fact that a person sys-
tematically makes statistical errors in forming her beliefs does not establish that she would 
also commit those errors in forming her acceptances, in which case she would familiarize 
herself  with and reflectively apply the requisite statistical rules. In fact, empirical studies 
of statistical education report considerable success of the various learning methods 
through which students acquire understandings of statistical inference.43

Behavioral economists’ failure to separate beliefs from acceptances looms large in 
the “Linda Problem”—a celebrated experiment of Kahneman and Tversky (Kahneman 
2011, pp. 156–58). Linda was described to participants as a 35-year-old woman, who was 
“single,” “outspoken,” “very bright,” and deeply concerned with “issues of discrimination 
and social justice.” Linda’s college life included majoring in philosophy and participating 
in anti-nuclear demonstrations. Participants were asked to select Linda’s occupation and 
social identity from the list provided by Kahneman and Tversky. “Bank teller” and “femi-
nist bank teller” were among the options on that list. Most participants ranked Linda’s 
being a “feminist bank teller” as more probable than Linda’s simply being a “bank teller.”

This assessment of probability defies mathematical logic. Linda’s feminism was a 
probable, but still uncertain, fact. Her occupation as a bank teller was a merely probable, 
rather than certain, fact as well. The probability of each of those characteristics was 
somewhere between 0 and 1. Hence, the probability that these two characteristics would 
be present simultaneously must be lower than the probability that attached to each 
individual characteristic. Linda was more likely to have only the “bank teller,” or only the 
“feminist,” characteristic than to possess both characteristics at once. Assuming that the 
characteristics are mutually independent and that the probability of each characteristic is, 
say, 0.6, Linda’s probability of being a feminist bank teller would equal 0.36. Remarkably, 
the Linda results were replicated with doctorate students at Stanford Business School.

To verify this important finding, Kahneman and Tversky conducted another experi-
ment that featured a simple question: “Which alternative is more probable? Linda is a 
bank teller. Linda is a bank teller and is active in the feminist movement.” Once again, 
the participants ranked the second joint-event scenario as more probable than the first 
single-event scenario.

Kahneman reports that after completing one such experiment, he asked the partici-
pants, “Do you realize that you have violated an elementary logical rule?” In response, 

41 Stein (2013, p. 88) “Nor would [a belief] deserve praise or blame in the way that a responsible 
act of acceptance deserves it.” 

42 This conflation was first spotted by Cohen (1981, pp. 328–29).
43 See, e.g., Arnold et al. (2011) reporting success with teaching statistical inference to 14-year-

old students with the help of hands-on physical simulations; Hall and Vance (2010), reporting 
success in teaching introductory statistics with the help of students’ self-explanation and peer 
feedback.
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a graduate student said “I thought you just asked for my opinion.” Kahneman cites this 
response to illustrate the stickiness of people’s probabilistic irrationality: the student who 
gave this response believed that her opinion on factual matters could defy mathematical 
logic.

The student’s response, however, ought to have moved Kahneman in a different direc-
tion. What the student was actually saying was “Had I known that you were expecting 
me to give you not just my best hunch about Linda’s job and social identity, but rather a 
rule-based evaluation of the relevant probabilities, my answer might have been different.” 
The student, in other words, understood the experiment as asking her to express her belief, 
rather than articulate and apply her criteria for acceptances. In forming this belief, she 
felt free to rely on her common sense and experience rather than on statistical rules. Her 
reasoning aligned with that of scientists who begin their inquiries with intuitive beliefs 
that they subsequently accept or reject (Cohen 1989, pp. 89–90).

Similar to many other experiments carried out by behavioral economists, the Linda 
Problem could only elicit the beliefs that participants intuitively formed. Those beliefs 
do not reveal much about the participants’ probabilistic rationality. Forming a rule-free 
belief, as opposed to a rule-driven acceptance, does not commit the believer to any 
specific reason, or rule, that she will follow in her other decisions.44 Acceptances driven 
by rules of reasoning are different. Most medical patients, for example, would attest that 
having spinal surgery followed by a coronary bypass operation is riskier than undergoing 
spinal surgery alone. This attestation correctly applies the product rule for conjunctive 
probabilities to facts that the patient deeply cares about. Unsurprisingly, it expresses the 
patient’s acceptance rather than belief.

As far as beliefs are concerned, the participants’ prevalent reaction to Linda was far 
from irrational. Formation of a person’s belief  always calls in the experience that a person 
has accumulated throughout her life.45 This experience cannot be artificially blocked by 
statistical rules, unless the person is expressly told to suppress all of her beliefs that do 
not conform to those rules and to base her decision on acceptance.46 From the standpoint 
of an ordinary person’s belief, the single-event scenario “Linda is a bank teller” was 
incomplete because bank tellers’ work does not normally occupy their entire lives. The 
absence of information about Linda’s social identity and afterwork engagements thus 
created a gap fillable by experience. Hence, it was entirely rational for participants to make 
an experience-based assumption that Linda must have some social identity or afterwork 
engagement. This assumption made the participants focus on the following question: is it 
more probable that, “Linda is a feminist bank teller” or that “Linda is a bank teller whose 
social identity and afterwork engagements are feminism free”?47

Based on Linda’s background information, the participants were absolutely (and 

44 Cf. Schauer (1995) associating official reasons with commitment to apply similar reasons in 
future cases.

45 See, e.g., Hume (1739) famously explaining “belief” as a consequence of the believer’s 
“number of past impressions and conjunctions.”

46 Cf. Cohen (1991) arguing that jurors should suppress their beliefs and determine facts 
through “acceptance.”

47 Cf. Gigerenzer (2005, pp. 8–9) criticizing Linda and similar experiments for their reliance on 
a “content-blind” norm for rationality. 
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unsurprisingly) correct in forming a belief  that ranked Linda’s feminism above other 
afterwork engagements. In technical terms, Linda’s probability of being a bank teller and 
a feminist, P(T&F), equaled P(T) ×P(F). Correspondingly, Linda’s probability of being 
a bank teller while having a non-feminist afterwork engagement, P(T&NF), equaled 
P(T) × P(NF). Under the factual setup that the participants were asked to consider, 
Linda was more likely to be a feminist than a non-feminist: P(F)  >  P(NF). Hence, 
P(T&F) > P(T&NF).

To preclude the formation of this rational belief, Kahneman and his associates ought to 
have asked the participants a simple question, suggested by Gerd Gigerenzer: “There are 
100 persons who fit the description above (that is, Linda’s). How many of them are: Bank 
tellers? Bank tellers and active in the feminist movement?” (Gigerenzer 2005, p. 10). This 
question would have elicited predominantly the statistically correct response (Gigerenzer 
2005).

Kahneman’s anticipated reply to this critique might fall along the following lines. 
The participants’ real task was to cut through the “noise” (the statistically meaningless 
information) and see what the experimenters asked them to do. The participants, so goes 
the argument, ought to have noticed that their task was to compare the probabilities of 
a single and a compound, or conjunctive, event. Had the participants noticed that, they 
also would have noticed that Linda’s probability of being a feminist bank teller was no 
different from the proverbial coin’s probability of revealing heads in two successive throws. 
On a 0 to 1 scale, this probability equals 0.5 × 0.5 = 0.25.

The coin analogy, however, is untidy because Linda’s social identity and afterwork 
engagement were not an unrigged coin. Linda’s background information made her 
engagement in feminist causes the most probable afterwork scenario. Arguably, this 
scenario was more probable than the case in which Linda’s work as a bank teller— 
surprisingly fulfilling or unduly exhaustive—represented everything she did in her life.

The upshot of my preceding discussion is straightforward. Studies of people’s proba-
bilistic decisions are not very fruitful when they focus on intuitive beliefs. Focusing on 
people’s rule-driven acceptances in settings that call for statistical reasoning—as in my 
double-surgery example—could give Kahneman and other behavioral economists a much 
better sense of people’s probabilistic rationality.

Behavioral economists, however, have chosen not to go along this route. Instead of 
adopting a simple all-statistics setup for their experiments, they mix statistical data with 
case-specific information. This informational mix can be found not only in the Linda 
Problem. Almost every experiment associated with the Kahneman and Tversky school 
of thought uses this mix, and there is a reason for that as well. Kahneman explains that 
causal associations corrupt people’s decisions: people try to find causal connections where 
none exists, while irrationally discounting important statistical information (Kahneman 
2011, pp. 74–78). This cognitive malfunction has shaped Kahneman’s and his associates’ 
experimental agenda. Kahneman and his associates seek to uncover how people’s “causa-
tion illusion” drives them to ignore statistical data and depart from statistical reasoning. 
As I demonstrated in Section 3, however, there is nothing wrong in people’s attempt to 
understand the outside world as a series of causes and effects. In fact, people will do well 
to rely on that understanding in most decisions they make during their lifetime.
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4.2 BPR vs. Probability Theory

BPR also encounters difficulties in the realm of probability theory. Responsible for those 
difficulties is the statistical–causative mix of information on which behavioral economists 
often base their experiments. Consider one of Kahneman and Tversky’s most famous 
experiments: the “Blue Cab Problem.” K a hneman, Tversky, and their collaborators told 
their participants about a hit-and-run accident that occurred at night in a city in which 
85% of cabs were blue and 15% were green (Kahneman 2011, pp. 166–70; Bar-Hillel 1980, 
pp. 211–12). They also told the participants that the hit-and-run victim filed a lawsuit 
against the companies operating those cabs—identified respectively as “Blue Cab” and 
“Green Cab”—and that an eyewitness testified in the ensuing trial that the cab that hit the 
victim was green. Another piece of information that the participants received concerned 
a rather unusual procedure that took place at this trial. The experimenters told the 
participants that “[t]he court tested the witness’ ability to distinguish between Blue and 
Green cabs under nighttime visibility conditions [and] found that the witness was able to 
identify each color correctly about 80% of the time, but confused it with the other color 
about 20% of the time” (Bar-Hillel 1980, pp. 211–12). Based on this information, most 
participants in the experiments assessed the probability that a green cab hit the victim 
at 0.8, presumably because they believed this was the probability that the eyewitness’s 
testimony was correct (Kahneman 2011, p. 167).

This assessment of probability aligned with the given credibility of the witness, but not 
with Bayes’ Theorem.48 The prior odds that the responsible cab was green as opposed to 
blue, P(G)/P(B), equaled 0.15/0.85. To calculate the posterior odds, P(G|W)/P(B|W), 
with W denoting the credibility of the witness, these odds had to be multiplied by the like-
lihood ratio. This ratio is equal to the odds attaching to the scenario in which the witness 
identified the cab’s color correctly, rather than incorrectly: P(W|G)/P(W|B). The posterior 
odds consequently equaled (0.15 × 0.8)/(0.85 × 0.2)—that is, 12/17. The probability that 
the victim’s allegation against the Green Cab is true thus amounted to 12/(17 + 12) or 
0.41—far below the “preponderance of the evidence standard” (> 0.5) that applies in civil 
litigation. The experiment thus seems to provide an elegant and robust demonstration of 
individuals’ total neglect of base rates.

This and similar experimental vignettes have a serious flaw that I call unspecified 
causality. The experimenters did not tell the participants that the relative frequency of 
blue and green cabs’ appearances on the streets of the city could somehow affect the 
witness’s capacity to tell blue from green. This causal effect is quite unusual: an ordinary 
person can tell blue from green even when they see one green cab and many blue cabs.49 
The experimenters therefore ought to have told the participants that the witness’s ability 
to distinguish between blue and green cabs might have been affected by the frequency 
with which those cabs appeared on the streets. Alternatively, the experimenters ought 
to have told the participants that in cases in which the witness failed to give the correct 

48 For exposition and proof of Bayes’ Theorem, see Stein (2011, pp. 211–13).
49 See Cohen (1986, p. 329) “[I]f  the green cab company suddenly increased the size of its fleet 

relative to that of the blue company, the accuracy of the witness’s vision would not be affected, and 
the credibility of his testimony would therefore remain precisely the same in any particular case of 
the relevant kind.”
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identification of the cab’s color, he might have made this mistake randomly rather than 
for some specific reason (Stein 2011, pp. 253–55).

The experimenters, in other words, ought to have ruled the causality factor in or out. 
Instead, they allowed the participants to deal with the unspecified causality as they 
deemed fit, and the participants rendered an unsurprising—albeit not watertight—verdict 
that the distribution of cabs’ colors in the city did not affect the witness’s ability to tell 
blue from green. Absent a causal connection between these two factors, the errant cab’s 
probability of being green as opposed to blue was indeed 0.8.

Unspecified causality is a serious flaw also because it makes the relevant reference 
class malleable.50 To see how this malleability affected the Blue Cab Problem, factor in 
the preponderance requirement that a plaintiff  in a civil suit needs to satisfy in order to 
win the case.51 Under th is requirement, the victim was certainly entitled to win her suit 
against Green Cab when the errant cab’s probability of being green, given the testimony 
of the witness—P(G|W)—was greater than 0.5. The victim, however, was equally entitled 
to win the suit when the probability of the scenario in which the witness correctly identi-
fies a green cab—P(W|G)—was greater than 0.5. The relevant reference class, in other 
words, could have been either the cab’s color or the witness’s accuracy.52 The participants 
therefore could not be wrong in selecting the witness’s accuracy as the relevant reference 
class. This perfectly rational choice allowed the participants to treat the probability of the 
witness’s accuracy (0.8) as a dominant factor in their decision.

More fundamentally, the mix of statistical and causative information brings into con-
sideration the normative openness of the “probability” concept (Stein 2011, pp. 200–204). 
As a normative matter, the Blue Cab Problem can be analyzed under two distinct analytical 
frameworks: mathematical (Pascalian) and causative (Baconian) (Stein 2011, pp. 253–56). 
The mathematical framework uses Bayes’ Theorem, whose application gives the victim’s 
case a 0.41 probability (if  we ignore the unspecified causality and the reference-class 
problem). This probability represents the errant cab’s chances of being green rather than 
blue, with a cab-identifying witness scoring 80 out of 100 on similar identifications in a 
city in which 85% of the cabs are blue and 15% are green.

The causative framework, on the other hand, yields an altogether different result, close 
to the mathematical probability of the witness’s accuracy (0.8). Under this framework, 
which I explained in more detail in Section 3, an event’s probability corresponds to the 
quantum and variety of the evidence that confirms the event’s occurrence while eliminat-
ing rival scenarios (Stein 2011, pp. 243–46). This qualitative evidential criterion separates 
causative probability from the mathematical calculus of chances (Stein 2011, pp. 235–46). 
Under this criterion, the eyewitness’s testimony that the errant cab was green was cred-
ible enough to rule out the “errant blue cab” scenario as causatively implausible. On the 
other hand, the distribution of blue and green cabs in the city had no proven effect on 
the eyewitness’s capacity to tell blue from green. The eyewitness’s testimony consequently 
overrode the cabs’ distribution evidence and removed it from the fact-finding process. 

50 For an outstanding analysis of reference-class malleability, see Allen and Pardo (2007, 
pp. 111–14).

51 See Stein (2005, pp. 143–48, 219–25) explaining the preponderance requirement and its 
underlying justifications.

52 This insight belongs to Owen (1987, p. 199).
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This eliminative method (favored by Francis Bacon and John Stuart Mill [Stein 2011, 
pp. 204–206, 236–40]) allowed the participants to evaluate the probability of the victim’s 
case at 0.8. This fact-finding method is not devoid of difficulties, but it is also far from 
being irrational (Stein 2011, pp. 236–40).

Contrary to Kahneman’s view, the Blue Cab Problem and similar experiments do 
not establish that people’s probability judgments are irrational.53 These judgments 
are predominantly rational. The legal system need not do more than remedy people’s 
 informational shortfalls—not cognitive incapacities—by applying the conventional doc-
trines of foreseeability, disclosure, informed consent, unconscionability, and consumer 
protection.

4.3 Causation vs. Chance

Behavioral economists often criticize people for putting too much faith in causation 
(Kahneman 2011, pp. 74–78, 114–18). This criticism presupposes that incomplete causal 
indicators can only create an associative illusion of causation (Kahneman 2011). At 
the same time, behavioral economists believe that incomplete statistical indicators—the 
chances that surround us—are real and hence dependable (Kahneman 2011, pp. 71–78, 
166–74).

This unexplained normative asymmetry is best illustrated by another milestone experi-
ment of Kahneman and Tversky. Aimed at identifying the “representativeness” bias, the 
“Steve Problem” featured Steve, described to participants as “very shy and withdrawn, 
invariably helpful, but with little interest in people, or in the world of reality. A meek and 
tidy soul, he has a need for order and structure, and a passion for detail” (Kahneman 
2011, p. 420). The experimenters asked the participants to choose Steve’s most probable 
 occupation from a list that included “farmer, salesman, airline pilot, librarian, [and] 
physician” (Kahneman 2011). According to Kahneman and Tversky, the participants 
used familiar (i.e., “representative”) stereotypes to identify Steve as a likely librarian, 
while  ignoring the fact that librarians are vastly outnumbered by farmers (Kahneman 
2011).

Kahneman and Tversky assume that there was only one correct way to answer the 
question about Steve’s job (Kahneman 2011, pp. 420–21). According to them, the par-
ticipants had to find out the percentage of  farmers, salesmen, airline pilots, librarians, 
and physicians in the general pool of  working males. This percentage determined Steve’s 
probability of  being a farmer, a salesman, an airline pilot, a librarian, or a physician. 
Kahneman and Tversky believe that trying to identify Steve’s profession through his 
personality traits is doomed to fail, as these traits are rather weak causal indicators of 
a person’s professional identity. The general statistic representing an average working 
male’s chances of  having one of  the above-mentioned professions was a far more 
dependable  indicator. This  indicator therefore ought to have trumped the uninformative 
individual traits. The participants’ failure to notice this statistical indicator, and their 

53 Cf. Gigerenzer (1996, p. 593) criticizing Kahneman and Tversky for testing people’s ascrip-
tions of probabilities to single events not amenable to such assessments. 
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consequent reliance on Steve’s individual traits was a cognitive error (Kahneman 2011, 
pp. 420–21).

I posit that this experiment was poorly designed. Steve’s personality traits did not make 
him a librarian, but they were certainly relevant to his choice of profession. If  so, the par-
ticipants should have been looking for a different, and more refined, statistic. Specifically, 
they should have been looking for the percentage of farmers, salesmen, airline pilots, 
librarians, and physicians in the general pool of working males who are shy, withdrawn 
and helpful, have meek and tidy souls and a passion for detail, and also need order and 
structure, while exhibiting little interest in people and the world of reality. Of course, this 
investigation would have been futile because general employment statistics do not single 
out the subcategory of working males formulated by Kahneman and Tversky. However, 
the fact that this investigation would have been futile does not make it inconsequential. 
Information revealing Steve’s job preferences was material. Distribution of professions 
across working males generally was a rough and potentially misleading substitute for that 
information. This distribution was informative, but its evidential value did not outweigh 
the evidential value of Steve’s personality traits. Kahneman and Tversky evidently think 
that it did, but this is just an opinion rather than empirical fact. People participating in 
the Steve Problem were entitled to use their opinions instead.

The Steve Problem’s design incorporates unspecified causality. This feature opened 
two decisional routes for the experiment’s participants. One could rationally estimate 
Steve’s probability of being a librarian as a matter of chance. Alternatively, one could 
estimate this probability as a question of Steve’s choice. Under the framework of 
chance, decision-makers would rely on the distribution of relevant professions across 
working males in general. Under the framework of choice, they would consider a prob-
able bargaining e quilibrium between Steve and prospective employers. This equilibrium 
solution would practically remove from the list the physician, the pilot, and the salesman. 
Arguably, as between being a farmer and being a librarian, Steve would choose to be 
a librarian. Finding a librarian position might be difficult—given the scarcity of such 
 positions, relative to the many jobs available on a farm—but Steve could succeed in getting 
it.

Kahneman and Tversky disapprove of the participants’ preference for the choice frame-
work. Notwithstanding their disapproval, this preference is perfectly rational. The choice 
framework is not problem free, given the scarcity of case-specific information about Steve, 
but extrapolating Steve’s probable occupation from the general pool of working males is 
equally problematic. Both modes of reasoning rely heavily on speculation, and there is 
consequently no way to tell which of them is epistemically preferable. Calling one of these 
modes of reasoning “rational” and another “irrational” is simply wrong.

Unspecified causality in an experiment’s design always makes the relevant reference 
class malleable. Consider again Steve’s case. Individuals participating in this experiment 
could perceive their task in two completely different ways. They could ask themselves 
whether Steve’s personality traits separate him from the average working male. 
According to Kahneman and Tversky, this was the right question to ask. However, an 
alternative—and equally rational—way to define the reference class was to focus on 
a narrower category of  working males who have Steve’s characteristics. The relevant 
reference class, in other words, could be either of  the following: (1) males, as distributed 
across different professions; or (2) professions, as distributed across different males. The 
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first of  these categories emphasizes chance, while the second centers on choice. There 
is no way to determine which of  those categories is more dependable than the other as 
a basis for statistical inference. Kahneman and Tversky evidently prefer chance over 
choice. The participants in their experiments did the opposite. As for myself, I remain 
undecided.

Behavioral economists criticize people’s reliance on case-specific knowledge as a “law 
of small numbers” (Kahneman 2011, pp. 109–18). This criticism is far removed from 
how most people—including judges and juries54—ascertain facts in their day-to-day 
lives. Behavioral economists’ skepticism about case-specific knowledge also cannot be 
justified as a wholesale proposition, for it brushes aside a distinct mode of probabil-
istic reasoning, known as causative or Baconian reasoning (Stein 2011, pp. 204–206, 
235–46). Behavioral  economists’ disregard of Baconian probability is perplexing. This 
mode of   probabilistic reasoning is perfectly rational (Stein 2011), and it also could 
explain—and, indeed, justify—people’s decisions that behavioral economists describe as 
erroneous.55

Under the causative system outlined in Section 3, a combination of credible case-
specific evidence and experience can develop a single causal explanation for the relevant 
event that will override the competing statistical explanations (Stein 2011, pp. 235–46). 
This override is the essence of the Baconian elimination method (Stein 2011, pp. 204–206). 
For example, in the Blue Cab Problem, participants were entitled to assign overriding 
probative value to the witness’s testimony that the errant cab was green. This testimony 
was not watertight, but it was credible and event specific. The event’s causal impact on 
the witness’s perceptive apparatus qualitatively differed from the city’s cab-color statistics. 
This impact might have been epistemically superior to those statistics and therefore 
properly overrode them in the participants’ minds.

This override was likely at work in the Steve Problem as well. There, participants used 
Steve’s personality traits to eliminate from their list every profession that did not fit the 
stereotype associated with these traits. “Librarian” was the only item that survived this 
elimination procedure, which led the participants to estimate that Steve must be a librar-
ian. Kahneman and Tversky correctly observe that this estimate was unfounded.56 They 
are, however, too quick to denounce the participants’ reasoning for failing to account for 
Steve’s prior probability of being a farmer, as opposed to a librarian. Under the causative 
system of probability, the elimination method that the participants chose to use was 
valid. The participants simply did not have enough evidence for choosing the “librarian” 
over the “farmer.” They would have had enough evidence for this assessment had they 
been informed, for example, that Steve is a connoisseur of literature. The addition of this 
information would have allowed the participants not to factor the statistical prevalence 
of farmers into their assessment.

54 See Stein (2005, pp. 80–106) explaining case-specificity requirements in the law of evidence.
55 See Cohen (1986, pp. 165–68) explaining why it is rational for people to rely on causative 

probabilities instead of naked statistics.
56 They explained that “In the case of Steve . . . the fact that there are many more farmers than 

librarians in the population should enter into any reasonable estimate of the probability that Steve 
is a librarian rather than a farmer” (Kahneman 2011, p. 420).
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5. CONCLUSION

Throughout their long history, humans have worked hard to tame chance.57 They adapted 
to their uncertain physical and social environments by using the method of trial and error. 
This evolutionary process made humans reason about uncertain facts the way they do. 
Behavioral economists argue that humans’ natural selection of their prevalent mode of 
reasoning wasn’t wise. They censure this mode of reasoning for violating the canons of 
mathematical probability that a rational person must obey.

In this chapter, I have challenged both parts of this claim. Based on the insights from 
probability theory and the philosophy of induction, I have argued that a rational person 
need not apply mathematical probability in making decisions about individual causes and 
effects. Instead, she should be free to use common-sense reasoning that generally aligns 
with causative (Baconian) probability. I also have shown that behavioral experiments 
uniformly miss their target when they ask reasoners to extract probability from informa-
tion that combines causal evidence with statistical data. Because it is perfectly rational for 
a person focusing on a specific event to prefer causal evidence to general statistics, those 
experiments establish no deviations from rational reasoning. Those experiments are also 
flawed in that they do not separate the reasoners’ unreflective beliefs from rule-driven 
acceptances. The behavioral economists’ claim that people are probabilistically challenged 
consequently remains unproven.
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